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LElTER TO THE EDITOR 

The sphinx: a limit-periodic tiling of the plane 

C Godrkche 
Service de Physique du Solide et de RCsonance Magnbtique, Commissariat a I’Energie 
Atomique, Saclay, F-91191 Gif-sur-Yvette Cedex, France 

Received 16 October 1989 

Abstract. The sphinx is a non-periodic tiling of the plane made of one type of tile. In 
order to characterise the type of order found in this tiling, the computation of its diffraction 
spectrum is considered. The spectrum contains a discrete component, with Bragg peaks 
located at the vertices of triangular lattices with lattice spacings, in reciprocal space, equal 
to any power o f f .  

A question which naturally arises when looking at aperiodic tilings of the plane is the 
nature of their diffraction spectra. For tilings generated by a projection method, the 
answer to this question is easy. In contrast, this question may be a challenging one 
for tilings for which the only known construction uses an inflation method. 

We consider such a case here. The tiling of figure 1 may be found in an article by 
Gardner [l], who named it the ‘sphinx’, or in the book by Grunbaum and Shephard 
[2]. It is generated by inflation, and made of a single type of tile, which tiles the plane 
non-periodically. The proof of this is given in [2]. In contradistinction to the Penrose 
tiling, this single tile may also generate a periodic tiling: two tiles abutted upside down 
form a parallelogram. 

The method used here to compute the Fourier transform is an extension to two 
dimensions of a method given by Bombieri and Taylor [3] to answer the following 
question. Consider a one-dimensional structure generated by inflation, i.e. by associat- 
ing short and long bonds with a substitution acting on letters. Then, if one knows that 
there is a discrete part (Dirac peaks) in the Fourier spectrum of the structure, what 
constraint does that imply for the substitution? This method [4] has already been used 
to compute the Fourier transform of tilings made with Robinson tiles: the Penrose 

Figure 1. The Sphinx tiling. Figure 2. Composing four sphinxes at generation n 
gives a sphinx at generation n + 1 with twice linear 
dimensions. 
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tiling, and also more general tilings such as chiral and random tilings. Five- or 
seven-fold tilings generated by inflation, with non-discrete Fourier specta [ 5 ]  have also 
been investigated recently. 

The tiling looked at here is much simpler, and for this reason it has the virtue of 
illustrating the method in a simple and pedagogical manner. 

Throughout this paper, we treat as synonymous the words inflation, substitution 
and composition. The sphinx tiling is obtained by a simple rule: four sphinxes put 
together give, by composition, one bigger sphinx (see figure 2). One has, though, to 
distinguish between a right and a left sphinx, depending on the position of the 'head' 
of the sphinx. So, a right sphinx is made out of three left sphinxes and a right sphinx; 
the converse is true for a left sphinx. This may be described by a substitution acting 
on the tiles at generation n (i.e. after n iteration steps), A, and B,, representing the 
right and left sphinx respectively. Hence the tiles at generation n + 1 are obtained 
from those at generation n by 

using an obvious notation. These equations only take into account the numbers of 
tiles involved in the substitution. They will be completed below by a more complete 
geometrical description. The substitution matrix 

A,+, = A,, +3B, B,+, = 3A, + B, (1) 

M = ( 1  3 1  3 )  

gives the numbers of tiles of generation n found in the tile of generation n + 1. The 
eigenvalues of M are 4 and - 2 .  

By convention, let every tile have its origin at the left corner; gk (k = 0,. . . , 5 )  are 
the unit vectors of the regular hexagonal lattice; R" (m = 0,. . . , 5 ) ,  denotes rotation 
through angle ma/3  in the plane. In its initial position, a tile has its largest side 
horizontal. The geometrical description of one step of the composition is expressed 
by the equations 
A,+,  = [ R 2 ,  ( 3 ~ o + ~ ~ 2 ) 2 " ] A , + [ R o , 0 ] B , + [ R o , ~ & 2 " ] B , + [ R 3 ,  (#i?o+e*1)2"]B, 

= [ R o , 0 ] A , + [ R o , & ? 0 2 " ] A , + [ R 3 ,  (3&+e*~)2"]A ,+[R4 ,2 i?12"]B ,  
(3)  

which give the content of the tile at generation n + 1 in terms of tiles at generation n. 
In the brackets, the first terms are rotations, and the second ones translations, acting 
on a tile at generation n, to bring it to its new position in the tile of the next generation. 
Here, A,, and B, are condensed notation for A, (x )  and B , ( x )  and represent the 
densities of matter attached to the right and left tiles respectively. For instance, the 
densities may be peaked distributions on the barcentre of each tile. In other terms, 
the tiling we consider is the dual of the given tiling. 

Since the linear dimensions of the inflated tile is doubled at each step of inflation, 
the linear dimensions of a tile at generation n is proportional to 2". 

The Fourier transform of the densities A, and B, are the Fourier amplitudes of 
the tiles denoted & ( q )  and k,,(q). Then, from ( 3 ) ,  one gets the recurrence relations 
between the Fourier amplitudes at successive generations: 
A,+,(q) = exp(-iq. ( 3 g 0 + $ 2 ) 2 n ) A , ( ~ 4 q ) +  S,,(q) 

+ exp(-iq - Sg02")IJ,(q) + exp(-iq - ($to+ ~ , ) 2 ~ ) k , ( ~ ~ q )  

+ exp( -iq ( 3 g 0 +  4)2")A, (  R'q) + exp(-iq 2i?12")&,(R2q). 

(4) 
i n + l ( q )  = An(q) + exp(-iq * S W ) A , ( ~ )  
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We investigate now whether the Fourier spectrum contains a discrete part. If so, there 
exist values of q for which the Fourier amplitudes have maximum growth, i.e. propor- 
tional to the number of tiles in the sample at a given generation n, namely 4". This 
implies that all the phases in (4) must vanish, mod 27r, for these particular values of 
q. The proof of this assertion, analogous to that used in the one-dimensional case, is 
left to the reader. These conditions yield the following equations on q: 

q~(320+~c?2)2"+0  mod 27r 

q ig02" + 0 mod 27r 

q ($go+ e*,)2" -+ 0 mod 27r 

q*(320+c?2)2"+0 mod 27r 

q - 22,2" + 0 mod 27r. 

In order to solve these equations, we use the fact that the values of x such that 

x2" -PO mod 1 when n +CO ( 6 )  

have the form 

M x=-  
2N (7) 

for some rank N, and some odd integer M; i.e. x is a dyadic. Note that for n 3 N, 
equation (6) becomes an equality. The solution to ( 5 )  is easily found to be 

where v is some integer, and 

A = 4 L  p = 4(M - 2 L )  ( 9 )  

with L and M being two integers. These results show that there exists a discrete part 
in the spectrum, for the values of q given by ( 8 ) .  This spectrum is therefore almost 
periodic. In fact, since the frequencies appearing in (8) are powers of 4, we encounter 
here a particular case of an almost periodic spectrum, called limit periodic [6]. 

The end of the calculation is performed along the same lines as in [4], i.e. for q 
given by (8), with a given v, when n 2 v equations (4) involve a constant 12 x 12 matrix 
with integer entries. Indeed, there are two equations, which connect q to R,, 
R2q, .  . . , R5q. This matrix may be diagonalised by means of the superpositions 

where w = exp(-i7r/3), and an analogous expression for the left amplitudes. The 
constant 12 x 12 matrix is decomposed into six 2 x 2 blocks 

The 2 x 2 matrix appearing in (1  1) has the following eigenvalues: 

Ao,, = 4, -2 

A 2 , ; = A 4 , i = f ( - l  *~%)=2.372, -3.372 

A l , i = A 5 , ; = 0 ,  -1 

A3.i = 2, 0 
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Figure 3. Composition of four identical tiles leading to a non-periodic tiling. 

where i = 1, 2. The original Fourier amplitudes are recovered by inversion of (10) 

o s p s 5 .  

The p = 0 term grows as 4" and yields a delta peak with a k-independent amplitude. 
Thus the Fourier transform has hexagonal symmetry. 

Since the dilatation factor is integer, it is in principle possible to compute the 
Fourier amplitudes explicitly. Indeed, we already remarked that as soon as n 3 Y the 
phases in ( 5 )  vanish mod 2.rr identically. 

One should of course make the same caveat as for the one-dimensional case studied 
by Bombieri and Taylor, i.e. this argument does not rule out the presence of a continuous 
part in the spectrum. 

Another tiling [ 2 ]  similar to the sphinx but with square symmetry may be obtained 
by the construction shown in figure 3. Note that now the tiling is made with only one 
type of tile, even in a restricted sense, namely that one does not have to distinguish 
between a right and a left tile. The computation of the Fourier spectrum is thus even 
simpler than for the sphinx. One finds a limit periodic spectrum with square symmetry 
as expected. 

It is worth mentioning that the 1 D structure built upon the substitution given in (1) 
has a different Fourier spectrum than that of the sphinx. Indeed, we remark that the 
second eigenvalue, -2 ,  does not play any role in the ZD case, whereas in I D  this 
eigenvalue appears in the conditions of vanishing phases. Though the largest eigen- 
value, 4, is an algebraic number or order one, hence a Pisot number [7], the presence 
of a second eigenvalue with modulus greater than 1 mimics the non-Pisot case. 

It is a pleasure to thank J M Luck for helpful remarks on this work, M Senechal for 
her encouragement to write it, and J Taylor for a critical reading of the manuscript. 
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